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Abstract. The present paper deals with the problem of computing a few of the eigenvalues with 
largest (or smallest) real parts, of a large sparse nonsymmetric matrix. We present a general 
acceleration technique based on Chebyshev polynomials and discuss its practical application 
to Arnoldi's method and the subspace iteration method. The resultinlg algorithms are 
compared with the classical ones in a few experiments which exhibit a sharp superiority of the 
Amoldi-Chebyshev approach. 

1. Introduction. An important number of applications in applied sciences and 
engineering require the numerical solution of a large nonsymmetric matrix eigen- 
value problem. Such is the case for example, in economical modeling [5], [16] where 
the stability of a model is interpreted in terms of the dominant eigenvalues of a large 
nonsymmetric matrix A. In Markov chain modeling of queueing networks [ 17], [18], 
[35], one is interested in an eigenvector associated with the eigenvalue unity of the 
transpose of a large nonsymmetric stochastic matrix. In structural engineering [6], 
[9], [10], [33], and in fluid mechanics [34] one often seeks to solve a bifurcation 
problem where a few of the eigenvalues of a family of nonsymmetric matrices A (a) 
are computed for several values of the parameter a in order to determine a critical 
value ac such that some particular eigenvalue changes sign, or crosses the imaginary 
axis. When it is a pair of complex eigenvalues that crosses the imaginary axis, the 
bifurcation point ac is referred to as a Hopf bifurcation point. This important 
problem was recently examined by Jepson [15] who proposes several techniques most 
of which deal with small dimension cases. Common bifurcation problems can be 
solved by computing a few of the eigenvalues with largest real parts of A(Ca) and then 
detecting when one of them changes sign. The study of stability of electrical 
networks is yet another interesting example requiring the numerical computation of 
the eigenvalue of largest real part. Finally, we can mention the occurrence of 
nonsymmetric generalized eigenvalue problems when solving the Riccati equations 
by the Schur techniques [20]. 

As suggested by the above important applications, we will primarily be concerned 
with the problem of computing a few of the eigenvalues with algebraically largest 
real parts, and their associated eigenvectors, of a large nonsymmetric matrix A. The 
literature in this area has been relatively limited as compared with that of the more 
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common symmetric eigenvalue problem. The subspace iteration method [2], [4], [13], 
[38], [39], seems to have been the preferred algorithm for many years, and is still 
often recommended [12]. However, this algorithm computes the eigenvalues of 
largest modulus while the above-mentioned applications require those of algebra - 
ically largest (or smallest) real parts. 

Furthermore, it is well known in the symmetric case that the Lanczos algorithm is 
far superior to the subspace iteration method [24]. Some numerical experiments 
described in [32] indicate that Krylov subspace based methods can be more effective 
in the nonsymmetric case as well. There are two known algorithms that generalize 
the symmetric Lanczos method to nonsymmetric matrices: 

1. The Lanczos biorthogonalization algorithm [19]; 
2. Arnoldi's method [1]. 
The first method has been recently ressucitated by Parlett and Taylor [26], [40] 

who propose an interesting way of avoiding break-downs from which the method 
may otherwise suffer. The second was examined in [32] where several alternatives 
have been suggested and in [30] where some additional theory was established. With 
the appropriate initial vectors, both of these approaches reduce to the symmetric 
Lanczos algorithm when the matrix A is symmetric. 

In the present paper we will describe a hybrid method based on the Chebyshev 
iteration algorithm and Arnoldi's method. These two methods taken alone face a 
number of limitations but, as will be seen, when combined they take full advantage 
of each other's attractive features. 

The principle of Arnoldi's method is the following: start with an initial vector v, 
and at every step compute Avi and orthogonalize it against all previous vectors to 
obtain vi + . At step m, this will build a basis (Vi)i=im of the Krylov subspace Km, 
spanned by v1, Av1, . . ., Am' - lv1. The restriction of A to Km is then represented in 
the basis {vi) by a Hessenberg matrix whose elements are the coefficients used in the 
orthogonalization process. The eigenvalues of this Hessenberg matrix will provide 
approximations to the eigenvalues of A. Clearly, this simple procedure has the 
serious drawback of requiring the presence in memory of all previous vectors at a 
given step m. Also the amount of work increases drastically with the step number m. 
Several variations on this basic scheme have been suggested in [32] to overcome this 
difficulty, the most obvious of which is to use the method iteratively, i.e., to restart 
the process after every m steps. This alternative was shown to be quite effective when 
the number of wanted eigenvalues is very small, and outperformed the subspace 
iteration by a wide margin in an application related to the Markov chain modeling 
of queueing networks [32]. 

There are instances, however, where the iterative Arnoldi algorithm exhibits poor 
performances. In some cases the minimum number of steps m that must be 
performed in each inner iteration in order to ensure convergence of the process, is 
too large. Another typical case of poor performance is when the eigenvalues that are 
to be computed are clustered while the unwanted ones have a very favorable 
separation as is illustrated in the next figure, for example: 

Wanted Unwa nted 
< --- > <?------------------------------- > 

I 111111 1 1 1 I I - 
0 
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Then, it is observed that the iterative process has some difficulties to extract the 
wanted eigenvalues because the process tends to be highly dominated by the 
convergence in the eigenvectors associated with the right part of the spectrum. These 
difficulties may be overcome by taking a large enough m but this can become 
expensive and impractical. 

In order to avoid these shortcomings of the iterative Arnoldi process, and, more 
generally, to improve its overall performance we propose to use it in conjunction 
with the Chebyshev iteration. The main part of this hybrid algorithm is a Chebyshev 
iteration which computes a vector of the form z, = p, (A)zo, where p, is a polynomial 
of degree i, and z0 is an initial vector. The polynomial p, is chosen so as to highly 
amplify the components of z0 in the direction of the desired eigenvectors while 
damping those in the remaining eigenvectors. A suitable such polynomial can be 
expressed in terms of a Chebyshev polynomial of degree i of the first kind. Once 

z, = pi(A)zo is computed, a few steps of Arnoldi's method, starting with v1 = z,1/Iz1ff, 
are carried out in order to extract from z, the desired eigenvalues. 

We will also discuss the implementation of a Chebyshev accelerated subspace 
iteration algorithm following ideas developed in [30]. 

In the context of large nonsymmetric linear systems, extensive work has been 
devoted to the use of Chebyshev polynomials for accelerating linear iterative 
methods [11], [21], [22], [23], [43]. Manteuffel's work on the determination of the 
optimal ellipse containing the convex hull of the spectrum of A [23], has been 
decisive in making the method reliable and effective. For eigenvalue problems, 
Rutishauser has suggested the use of Chebyshev polynomials for accelerating sub- 
space iteration in the symmetric case [29], [42]. However, Chebyshev acceleration has 
received little attention as a tool for accelerating the nonsymmetric eigenvalue 
algorithms. The algorithms that we propose in this paper can be regarded as a simple 
adaptation of Manteuffel's algorithm to the nonsymmetric eigenvalue problem. 

The Chebyshev acceleration technique increases the complexity of the basic 
Arnoldi method and the resulting improvement may not be worth the extra coding 
effort for simple problems. However, for more difficult problems, acceleration is 
important not only because it speeds up the process but mostly because it provides a 
more reliable method. 

We point out that a hybrid Arnoldi-Chebyshev method for solving nonsymmetric 
linear systems using ideas similar to the ones developed here is currently being 
developed [8]. 

In Section 2, we will describe the basic Chebyshev iteration for computing an 
eigenpair and analyze its convergence properties. In Sections 3, 4 and 5 we will show 
how to combine the Chebyshev iteration with Arnoldi's method and with the 
subspace iteration method. In Section 6 we will report a few numerical experiments, 
and in the last section we will draw a tentative conclusion. 

2. Chebyshev Iteration for Computing Eigenvalues of Nonsymmetric Matrices. 
2.1 The Basic Iteration. Let A be a nonsymmetric real matrix of dimension N and 

consider the eigenvalue problem: 

(1) Au = Xu. 
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Let Al I AN be the eigenvalues of A labelled in decreasing order of their real 
parts, and suppose that we are interested in A1 which, to start with, is assumed to be 
real. 

Consider a polynomial iteration of the form: z, = p&(A)zo, where zo is some 
initial vector and where p, is a polynomial of degree n. We would like to choose pn in 
such a way that the vector zn converges rapidly towards an eigenvector of A 
associated with A1 as n tends to infinity. Assuming for simplicity that A is 
diagonalizable, let us expand zo and Zn = pn(A)zo in the eigenbasis (u,): 

If 
N 

(2) Zo= E Ui' 
,=1I 

then 
N N 

(3) Zn E O1Pn(()u1 = Olpn(A1)ul + E O1iPn(A1)U. 
i=2 

Expansion (3) shows that if Zn is to be a good approximation of the eigenvector u1, 
then everypn(AJ), withj * 1, must be small in comparison withpn(A1). This leads us 
to seek a polynomial which is small on the discrete set R = (A2, A3, ..., AN) and 
which satisfies the normalization condition 

(4) (A1) = 1. 

An ideal such polynomial would be one which minimizes the (discrete) uniform 
norm on the discrete set R over all polynomials of degree n satisfying (4). However, 
this polynomial is clearly impossible to compute without the knowledge of all 
eigenvalues of A and this approach is therefore of little interest. A simple and more 
reasonable alternative, known for a long time [41], is to replace the discrete minimax 
polynomial by the continuous one on a domain containing R but excluding X1. Let E 
be such a domain in the complex plane, and let Pn denote the space of all 
polynomials of degree not exceeding n. We are thus seeking a polynomial pn which 
achieves the minimum 

(5) min maxlp(X)I. 
p E P,,,p(X)= I X E E 

For an arbitrary domain E, it is difficult to solve explicitly the above minimax 
problem. Iterative methods can be used, however, and the exploitation of the 
resulting minimax polynomials for solving eigenvalue problems constitutes a promis- 
ing research area. An alternative way around that difficulty is to restrict E to be an 
ellipse having its center on the real line, and containing the unwanted eigenvalues X, 
i= 2,...,N. 

Let E(d, c, a) be an ellipse with real center d, foci d + c, d - c, major semiaxis a, 
and containing the set R = {A2, ... I XN). Since the spectrurn of A is symmetric with 
respect to the real axis, we will restrict E(d, c, a) to being symmetric as well. In 
other words, the main axis of the ellipse must be either the real axis or must be 
parallel to the imaginary axis. Therefore, a and c are either real or purely imaginary, 
see Figure 2-1. 
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FIGURE 2- 1 Ellipses containing the set R of the remaining eigenvalues 

Then it is known that, when E is the ellipse E(d, c, a) in (5), the best minimax 
polynomial is the polynomial 

(6) Pn(X) - 
Tn[(X d)/c] 

where Tn is the Chebyshev polynomial of degree n of the first kind, see [3], [21], [43]. 
The computation of zn, n = 1, 2,. .., is simplified by the three-term recurrence for 

the Chebyshev polynomials: 
T1(X) = X, To(x) = 1, 

Tn+7(X) = 2XTn(X) - )-TnI(X) n = 1,2,.... 

Letting pn = Tn [(X - d)/c], n = 0, 1, . . ., we obtain 

Pn+ I Pn+ I (X) = I ?[(X - d)/c] = 2 
X 

Pn Pn (x)-Pn- I Pn- I 
(-) 

Let us transform this further by setting an+ I = PnlPn+ ?: 

Pn+ I (X) = 2a(n+ I d(x Pn(A)-gnUn+IPn-I(A) C 
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A straightforward manipulation using the definitions of a1, P1 and the three-term 
recurrence relation of the Chebyshev polynomials shows that a, i = 1,..., can be 
obtained from the recursion: 

= c/(X, - d); n a n = 1,2,.... 

The above two recursions can now be assembled together to yield a basic algorithm 
for computing z, = p1(A)zo, i = 1, 2,.... Although X1 is not known, recall that it is 
used in the denominator of (6) for scaling purposes only, so we can replace it by 
some approximation v in practice. 

Algorithm: Chebyshev Iteration 
1. Start: Choose an arbitrary initial vector zo; compute 

(7) a = c/(XI - d) 

(8) z = I (A - dI)zo. 

2. Iterate: For n = 1, 2,... until convergence do: 

(9) 12/a - 

(10) Zn+ 21 =2 (A -ddI)zn - anan+IZn- 

An important detail, which we have not discussed for the sake of clarity, 
concerns the case when c is purely imaginary. It can be shown quite easily that even 
in this situation the above recursion can still be carried out in real arithmetic. The 
reason for this is that the scalars ai, i = 1,..., become all purely imaginary as can 
easily be shown by induction. Hence the scalars a(n+1/c and aCn+lan in the above 
algorithm are real numbers. The primary reason for scaling by Tn[(X I - d)/c] in (6) 
is to avoid overflow but, as was just explained, a secondary reason is to avoid 
complex arithmetic when c is purely imaginary. 

2.2. Convergence Properties. In order to understand the convergence properties of 
the sequence of approximations Zn consider its expansion (3): 

N N 

Zn E OiPn(Xi)U, = 0IuI + , O1pn(X1)ui. 
1=1 1=2 

We would like to examine the behavior of each coefficient of u1, for i * 1. We 
have: 

n(N) -Tn[(X -d)/c] 

Tn[(= I -d)/c] 

From one of the various ways of defining the Chebyshev polynomials in the 
complex plane [27], the above expression can be rewritten as 
( 1 1 ) Pn ( N1 ) ~Wn + W n' 

Pl\ wn + w-n 

where w, represents the root of largest modulus of the equation in w: 

(12) I (w + w-1) = (N -d)/c. 
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From ( 1), P (Xi) is asymptotic to [ wi/w ] n, hence: 
Definition 1. We will refer to K, = I wi/wl as the damping coefficient of NA relative 

to the parameters d, c. The convergence ratio T(X1) of X1 is the largest damping 
coefficient Ki for i * 1. 

This definition must be understood in the following sense: each coefficient in the 
eigenvector u1 of the expansion (3) behaves like K n, as n tends to infinity. The 
damping coefficient K(N) can obviously be also defined for any value N of the 
complex plane by replacing NA by N. 

One of the most important features in Chebyshev iteration lies in Eq. (12). 
Observe that there are infinitely many points N in the complex plane whose damping 
coefficient K(N) has the same value K. These points N are defined by (N - d)/c = 
(w + w-1)/2 and Iw/w11 = K where p is some constant. Thus a great deal of 
simplification can be achieved by locating those points that are real as it is preferable 
to deal with real quantities than imaginary ones in the above expression defining K,. 

The well-known mapping J(w) = '(w + w-1), often referred to as the Joukowski 
transform [27], maps a circle into an ellipse in the complex plane. More precisely, for 
w = pe'0, J(w) belongs to an ellipse of center the origin, focal distance 1, and major 
semiaxis a = 4(p + p-1). Given the major semiaxis a, p is determined by p - 

'[a + (a(2 - 1)1/2]. As a consequence the damping coefficient K1 is simply p1/p1 
where PJ= 2[ + (al - 1)1/2] and aj is the major semiaxis of the ellipse centered at 
the origin, with focal distance one and passing through (Xi -d )/c. Since a, > a, 
i = 2, 3,. . ., N, it is easy to see that p1 > p1, i > 1, and hence that the process will 
converge. Note that there is a further mapping between Xi and (Xi - d)/c which 
transforms the ellipse E(d, c, aj) into the ellipse E(O, 1, aj) where aj and aj are 
related by aj = aj/c. Therefore, the above expression for the damping coefficient 
can be rewritten as: 

(13) K, = p,/p a ( - 1)1/2 

a1 + (a~ 2 
1)1/2 

where al is the major semiaxis of the ellipse of center d, focal distance c, passing 
through Xi. From the expansion (3), the vector Zn converges to Olul, and the error 
behaves like T( I)n . For nonnormal matrices A random vectors z0 sometimes 
yield small values of 01 and then convergence is delayed. 

The above algorithm ignores the following important points: 
*It is unrealistic to assume that the parameters d and c are known beforehand, 

and some adaptive scheme must be implemented in order to estimate them dynami- 
cally. 

*The algorithm does not handle the computation of more than one eigenvalue. In 
particular what to do in case N, is complex, i.e. when N1 and N2 = kX form a complex 
pair? 

Suppose that E(d, c, a) contains all the eigenvalues of A except for a few. 
Looking closely at the expansion of Zn I we observe that it contains more than just an 
approximation to uI because we can write: 

(14) Zn = 01u1a + ail u2 + + 1U, Uir+ 
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where N1,..., N1 are the eigenvalues outside E(d, c, a) and E is a small term in 
comparison with the first r ones. All we need, therefore, is some powerful method to 
extract those eigenvalues from the single vector Zn We will refer to such a method as 
a purification process. One such process among many others is the Arnoldi method 
considered in the next section. 

3. Arnoldi's Method as a Purification Process. A brief description of Arnoldi's 
method is the following: 

Arnoldi's Algorithm 
1. Start: Choose an initial vector vI of norm unity, and a number of steps m. 
2. Iterate: For j = 1, 2,..., m do: 

I 

(15) AVJ- h, hIJ 

(16) with = (Avj, v), i 1,.. 

(17) h = + 

(18) vj+1I = V>+l/hj+ I J. 

This algorithm produces an orthonormal basis Vm = [vI, V2,.. ., vm] of the Krylov 
subspace Km = span{vl, AV.,..., Am- l1v). In this basis the restriction of A to Km is 
represented by the upper Hessenberg matrix Hn1 whose entries are the elements hij 
produced by the algorithm. The eigenvalues of A are approximated by those of Hn1 
which is such that Hm = VmA Vm. The associated approximate eigenvectors are given 
by: 

(19) =i ViY1, 

where yg is an eigenvector of Hm associated with the eigenvalue 1. We will assume 
throughout that the pair of eigenvectors associated with a conjugate pair of eigenval- 
ues are normalized so that they are conjugate to each other. Note that ui has the 
same Eucidean norm as 9,. The following relation is extremely useful for obtaining 
the residual norm of ui without even computing it explicitly: 

(20) II(A - X,I)Ciil = hm+?imle TYI1 

in which em = (0, o,..., 0, I)T. This result is well known in the case of the symmetric 
Lanczos algorithm [25], and its extension to the nonsymmetric case is straightfor- 
ward [32]. 

The method of Arnoldi amounts to a Galerkin process applied to the Krylov 
subspace Km [1], [32]. A few variations on the above basic algorithm have been 
proposed in [32] in order to overcome some of its impractical features, and a 
theoretical analysis was presented in [30]. 

One important property of the algorithm is that if the initial vector v I is exactly in 
an invariant subspace of dimension r and not in any invariant subspace of smaller 
dimension, i.e., if the degree of the minimal polynomial of vI is r, then the above 
algorithm cannot be continued after step r, because we will obtain 'r+1ll = 0. 
However, the next proposition shows that in this case Kr will be invariant which 
implies, in particular, that the r computed eigenvalues are exact. 
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PROPOSITION 1. Assume that the degree of the minimal polynomial of vI is equal to r. 
Then Arnoldi's method stops at step r and Kr is an invariant subspace. Furthermore, 
the eigenvalues of Hr are the eigenvalues of A associated with the invariant subspace 
Kr. 

Proof. Kr+I = span{vl, Avl,..., Arvl). By assumption there is a monic poly- 
nomial p of degree r such - that p(A)vI = 0. Hence Arvi E Kr and Kr+ I= Kr. So 
AKr which is a subset of Kr+ I equals Kr and Kr is invariant under A. Consequently, 
Hr is not just a projection of A onto Kr but a restriction of A to Kr. As a 
consequence every eigenvalue of Hr is an eigenvalue of A. [1 

4. The Arnoldi-Chebyshev Method. Suppose that we can find an ellipse E(d, c, a) 
that contains all the eigenvalues of A except the r wanted ones, i.e., the r eigenvalues 
of A with largest real parts. We will describe in a moment an adaptive way of getting 
such an ellipse. Then an appealing algorithm would be to run a certain number of 
steps of the Chebyshev iteration and take the resulting vector zn as initial vector in 
the Arnoldi process. From the Arnoldi purification process one obtains a set of m 
eigenvalues, r of which are approximations to the r wanted ones, as suggested by 
Proposition 1, while the remaining ones will be useful for adaptively constructing the 
best ellipse. After a cycle consisting of n steps of the Chebyshev iteration followed 
by m steps of the purification process, the accuracy realized for the r rightmost 
eigenpairs may not be sufficient and restarting will then be necessary. The following 
is an outline of a simple algorithm based on the above ideas: 

*Start: Choose an initial vector v1, a number of Arnoldi steps m and a number of 
Chebyshev steps n. 

*Iterate: 
1. Perform m steps of the Arnoldi algorithm starting with vl. Compute the m 

eigenvalues of the resulting Hessenberg matrix. Select the r eigenvalues of largest 
real parts X1, ..., Xr and take R = {Xr + I m). If satisfied stop, otherwise con- 
tinue. 

2. Using R, obtain the new estimates of the parameters d and c of the best ellipse. 
Then compute the initial vector zo for the Chebyshev iteration as a linear combina- 
tion of the approximate eigenvectors u-, i = 1,...,r. 

3. Perform n steps of the Chebyshev iteration to obtain zn. Take v1 = zn/lIZnl and 
to back to 1. 

Next, some important details left unclear in the above simplistic description will 
be examined. 

4.1. Getting the Optimal Ellipse. As explained earlier we would like to find the 
'best' ellipse enclosing the set R of nonwanted eigenvalues, i.e., the eigenvalues other 
than the ones with the r algebraically largest real parts. We must begin by clarifying 
what is meant by 'best' in the present context. Consider Figure 4-1 representing a 
spectrum of some matrix A and suppose that we are interested in the r rightmost 
eigenvalues, i.e. r = 4 in the figure. 

We will extend Definition 1 of the convergence ratio T(X,) of an eigenvalue N1, 
= 1, . . ., r, as the largest damping coefficient K, forj = r + 1,..., N. 
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FIGURE 4-1: The optimal ellipse 

In the context of linear systems, there is only one convergence ratio [21], [23], and 
the best ellipse is defined as being the one which rnaximizes that ratio. In our 
situation we have r different convergence ratios each corresponding to one of the 
desired eigenvalues A, i = 1,.. ., r. 

Initially, assume that Ar is real and consider any ellipse E(d, c, a) including R and 
not {Al, A2 ..., Ar). It is easily seen from our comments of subsection 2.2 that if we 
draw a vertical line passing through the eigenvalue Ar, all eigenvalues to the right of 
that line will converge faster than those to its left. Therefore, when Ar is real, we may 
simply define the best ellipse as the one maximizing the convergence ratio of Ar over 
the parameters d and c. 

When Ar is not real, the situation is more complicated. We could still attempt to 
maximize the convergence ratio for the eigenvalue Ar, but the formulas giving the 
optimal ellipse do not extend to the case where Ar is complex and the best ellipse 
becomes difficult to determine. But this is not the main reason why this choice is not 
suitable. A close look at Figure 4-2, in which we assume r = 5, reveals that the best 
ellipse for Ar may not be a good ellipse for some of the desired eigenvalues. More 
precisely, in the figure, the pair A2, A3 is enclosed by the best ellipse for A5. As a 
consequence the components in U2, U3 will converge more slowly than those in some 
of the undesired eigenvectors, e.g. UN in the figure. 

The figure explains the difficulty more clearly: the problem comes from the 
relative position of A4 and A2 with respect to the rest of the spectrum, and it can be 
resolved by just maximizing the convergence ratio of A2 instead of A5 in this case. 

In a more complex situation it is unfortunately more difficult to determine at 
which particular eigenvalue Ak or more generally at which value y it is best to 
maximize T(ML). Clearly, one could solve the problem by taking A = Re(Ar), but this 
is not the best choice. 

As an alternative, we propose to take advantage of the previous ellipse, i.e. the 
ellipse determined from the previous purification step, as follows. We determine a 
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FIGURE 4-2: A case where Xr is complex: 
the eigenvalues N2 and N3 are inside the "best " ellipse 

point yi on the real line having the same convergence ratio as Nr with respect to the 
previous ellipse. The next 'best' ellipse is then determined so as to maximize the 
convergence ratio for this point yi. This reduces to the previous choice yi = Re(Nr) 
when Nr iS real. At the very first iteration one can set y to be Re(Nr). 

The question which we have not yet fully answered concerns the practical 
determination of the best ellipse. At a typical step of the Arnoldi process we are 
given m approximations N1, i = 1,. .., m, of the eigenvalues of A. This approximate 
spectrum is divided in two parts: the r wanted eigenvalues N1,. .., Xr andtestRo 
the remaining eigenvalues R = {Nr?i, Xr?2,-, Nm). From the previous ellipse and 
the previous sets A, we would like to determine the next estimates for the optimal 
parameters d and c. 

Fortunately, a similar problem was solved by Manteuffel [21], [23] and his work 
can easily be adapted to our situation. The change of variables t = (y- N) 
transforms 4 into the origin in the (-plane and the problem of maximizing the ratio 
T(JJ) is transformed into one of maximizing a similar ratio in the (-plane for the 
origin, with respect to the parameters d and c. An effective technique for solving this 
final problem has been developed in [21], [23] but we will not describe it here. Thus, 
all we have to do is pass the shifted eigenvalues yi - N1, j = r + 1,..., m to the 
appropriate codes in [21], and the optimal values of yi - d and c will be returned. 

4.2. Starting the Chebyshev Iteration. Once the optimal parameters d and c have 
been estimated we are ready to carry out a certain number n of steps of the 
Chebyshev iteration (10). In this subsection we would like to indicate how to select 
the starting vector z0 for this iteration. Before doing so, we wish to deal with a minor 
difficulty encountered when N1 is complex. Indeed, it was mentioned after the 
algorithm described in subsection 2.1 that the eigenvalue N1 in (7) should, in 
practice, be replaced by some approximation v of N1. If AI defined in subsection 4.1 
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is real then we can take v = Al and the iteration can be carried out in real arithmetic 
as was already shown, even when c is purely imaginary. However, the iteration will 
become complex if Xi is complex. To avoid this it suffices to take v to be one of the 
two points where the ellipse E(d, c, a,) passing through XI, crosses the real axis. The 
effect of the corresponding scaling of the Chebyshev polynomial will be identical 
with that using XI but will present the advantage of avoiding complex arithmetic. 

Let us now indicate how one can select the initial vector z0. In the hybrid 
algorithm outline in the previous section, the Chebyshev iteration comes after an 
Arnoldi step. It is then desirable to start the Chebyshev iteration by a vector which is 
a linear combination of the approximation eigenvectors (19) associated with the 
rightmost r eigenvalues. 

Let (i be the coefficients of the desired linear combinations. Then the initial vector 
for the Chebyshev process is 

r r r 

Zo= E (jU = E = Vm . 

i=l i=1 i=1 

Hence 
r 

(21) z0 = Viny, wherey = y 

Therefore, the eigenvectors Ui, i = 1, r need not be computed explicitly. We only 
need to compute the eigenvectors of the Hessenberg matrix H, and to select the 
appropriate coefficients (. An important remark is that if we choose the 's to be 
real and such that ( = + for all conjugate pairs N0 N1+ = I 1, then the above 
vector z0 is real. 

Assume that all eigenvectors, exact and approximate, are normalized so that their 
2-norms are equal to one. One desireable objective when choosing the above linear 
combination is to attempt to make z, the vector which starts the next Arnoldi step, 
equal to a sum of eigenvectors of A of norm unity, i.e., the objective is to have 

Zn = 01UI + 02U2 + *- + OrUr, with IOil = 1, i = 1,2,..., r. For this purpose, sup- 
pose that for each approximate eigenvector ai we have ui = yiu, + El, where the 
vector ei has no components in u,,. Ur. Then: 

r 

Zn =IYIUI + 42Y2U2 + + r,YrUr + E, whereE = E 
1= 1 

Near convergence IyI is close to one and IIE-II is small. The result of n steps of the 
Chebyshev iteration applied to z0 will be a vector Zn such that: 

Zn (1U1 + c2'272U2 + r.r. + CrYrUr + Pn (A)e 

Since E has no components in ui, i = 1,. . ., r, Pn(A)e tends to zero faster than the 
first r terms, as n tends to infinity. Hence, taking K = K7'n, i = 1 2,.. ., r, will give a 
vector which has components y, in the eigenvectors u,, i = 1,..., r. Since IYj 1 
near convergence this is a satisfactory choice. 

Another possibility suggested in [32] for the iterative Arnoldi process is to weigh 
the combination of ti according to the accuracy obtained after an Arnoldi step, for 
example: 

= II(A - XII)a1ii. 
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Notice that the residuals of two complex conjugate approximate eigenelements are 
equal, so this choice will also lead to a real z0. The purpose of weighing a vector a1 
by its residual norm is to attempt to balance the accuracy between the different 
eigenelements that would be obtained at the next Arnoldi step. Thus if too much 
accuracy is obtained for u, versus the other approximate eigenvectors, the above 
choice of the (i's will put less weight on il and more on the other vectors in order to 
attempt to reduce the advantage of ul in the next Arnoldi step. 

In the experiments reported later, we have only considered the first possibility 
which was observed to be slightly more effective than the latter. 

4.3. Choosing the Parameters m and n. The number of Arnoldi steps m and the 
number of Chebyshev steps n are important parameters that affect the effectiveness 
of the method. Since we want to obtain more eigenvalues than the r desired ones, in 
order to use the remainder in choosing the parameters of the ellipse, m should be at 
least r + 2 (to be able to compute a complex pair). In practice, however, it is 
preferable to take m several times larger than r. In typical runs m is at least 3r or 4r 
but can very well be even larger if storage is available. It is also possible to change m 
dynamically instead of keeping it fixed to a certain value but this variation will not 
be considered here. 

When choosing n, we have to take into account the following facts: 
*Taking n too small may result in a slowing down of the algorithm; ultimately 

when n = 0, the method becomes the simple iterative Arnoldi method. 
Olt may not be effective to pick n too large: otherwise the vector zn may become 

nearly an eigenvector which could be troublesome for the Arnoldi process. More- 
over, the parameters d, c of the ellipse may be far from optimal and it is better to 
reevaluate them frequently. 

Recalling that the component in the direction of u1 will remain constant while 
those in ui, i = 2,.. ., r, will be of the same order as K n, we should attempt to avoid 
having a vector zn which is entirely in the direction of u1. This can be done by 
requiring that all Kin, i = 2,.. ., r, be no less than a certain tolerance 3, i.e.: 

(22) n = log(8)/log[Kj], 

where Kj is the largest convergence ratio among Ki, i = 2,..., r. In the code tested in 
Section 6, we have opted to choose 8 to be nearly the square root of the unit 
round-off. 

Other practical factors should also enter into consideration. For example, it is 
desirable that a maximum number of Chebyshev steps nmax be fixed by the user. 
Also in case we are close to convergence, we should avoid employing an unneces- 
sarily large number of steps as might be dictated by a straightforward application of 
(22). 

5. Application to the Subspace Iteration Algorithm. 
5.1. The Basic Subspace Iteration Algorithm. The subspace iteration method, or 

simultaneous iteration method, can be regarded as a (Galerkin) projection method 
onto a subspace of the form AnX, where X [xl,..., xm] is an initial system of m 
linearly independent vectors. There are many versions of the method [4], [13], [38], 



580 YOUCEF SAAD 

[39], but a very simple one is the following: 

1. Start: Q < X. 
2. Iteration: Compute Q < AnQ. 
3. Projection step: Orthonormalize Q and get eigenvalues and eigenvectors of 

C = QTA Q. Compute Q QF, where F is the matrix of eigenvectors of C. 
4. Convergence test: If Q is not a satisfactory set of approximate eigenvectors go to 

2. 

The algorithm presented in [13] is equivalent to the above algorithm except that 
the approximate eigenelements are computed without having to orthonormalize Q. 
The SRRIT algorithm presented by Stewart [38], [39] aims at computing an 
orthonormal basis Q of the invariant subspaces rather than a basis formed of 
eigenvectors. It is also mathematically equivalent to the above in the restricted sense 
that the corresponding invariant subspaces are theoretically identical. We should 
point out that this latter approach is more robust because an eigenbasis of the 
invariant subspace may not exist or may be badly conditioned, thus causing serious 
difficulties for the other versions. We should stress however that the Chebyshev 
acceleration technique can be applied to any version of the subspace iteration 
although it will only be described for the simpler version presented above. 

5.2. Chebyshev Acceleration. The use of Chebyshev polynomials for accelerating 
the subspace iteration was suggested by Rutishauser [29], [42] for the symmetric case. 
It was pointed out in [30] that this powerful technique can be extended to the 
nonsymmetric case but no explicit algorithm was formulated for computing the best 
ellipse. 

We will use the same notation as in the previous sections. Suppose that we are 
interested in the rightmost r eigenvalues and that the ellipse E(d, c, a) contains the 
set R of all the remaining eigenvalues. Then the principle of the Chebyshev 
acceleration method is simply to replace the powers An in the first part of the basic 
algorithm described above by p&(A) where p is the polynomial defined by (6). It can 
be shown [30] that the approximate eigenvector ii, i = 1,.. ., r converges towards u, 
as T7,(a/c)T,,[(X, - d )/c], which, using arguments similar to those of subsection 2.2, 
is equivalent to q7 where 

(23) ri= a+ [a 2 111/2 
a,i + [a7 2 1]1/2 

The above convergence ratio can be far better than the value IArIlN, I which is 
achieved by the classical algorithm.** 

On the practical side, the best ellipse is obtained dynamically in the same way as 
was proposed for the Chebyshev-Arnoldi process. The accelerated algorithm will 
then have the following structure: 

1. Start: Q < X. 
2. Iteration: Compute Q < p (A)Q. 

** The subspace iteration method computes the eigenvalues of largest moduli. Therefore, the regular 
subspace iteration method and the accelerated method are comparable only when the r + 1 rightmost 
eigenvalues are also the r + 1 dominant ones. 
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3. Projection step: Orthonormalize Q and get eigenvalues and eigenvectors of 
C = QTAQ. Compute Q 4= QF, where F is the matrix of eigenvectors of C. 

4. Convergence test: If Q is a satisfactory set of approximate eigenvectors then 
stop, else get new best ellipse and go to 2. 

Most of the devices described for the Arnoldi process extend naturally to this 
algorithm, and we now discuss briefly a few of them. 

1. Getting the best ellipse. The construction of the best ellipse is identical with that 
seen in subsection 4.1. The only difficulty we might encounter is that the extra 
eigenvalues used to build the best ellipse are now less accurate in general than those 
provided by the more powerful Arnoldi technique. More care must therefore be 
taken in order to avoid building an ellipse based on inaccurate eigenvalues as this 
may slow down considerably the algorithm. 

2. Parameters n and m. Here, one can take advantage of the abundant work on 
subspace iteration available in the literature. All we have to do is replace the 
convergence ratios JXr+? /X,l of the basic subspace iteration by the new ratios , of 
(23). For example, one way to determine the number of Chebyshev steps n, proposed 
in [29] and in [141 is: 

n [I + log(,&')/log('q)], 

where E is some parameter depending on the unit round-off. The goal of this choice 
is to prevent the rounding errors from growing beyond the level of the error in the 
most slowly converging eigenvector. The parameter n is also limited from above by a 
user supplied bound nma, and by the fact that if we are close to convergence a 
smaller n can be determined to ensure convergence at the next projection step. 

The same comments as in the Arnoldi-Chebyshev method can be made concerning 
the choice of m, namely that m should be at least r + 2, but preferably even larger 
although in a lesser extent than for Arnoldi. Note that for the symmetric case it is 
often suggested to take m = 2r or m = 3r. 

3. Deflation. Another special feature of the subspace iteration is the deflation 
technique which consists in working only with the nonconverged eigenvectors, thus 
'locking' those that have already converged, see [14], [29], [38]. Clearly, this can be 
used in the accelerated subspace iteration as well and will enhance its efficiency. For 
the more stable versions such as SRRIT, a similar device can be applied to the Schur 
vectors instead of the eigenvectors [39]. 

6. Numerical Experiments. The numerical experiments described in this section 
have been performed on a VAX1 1-780 computer using double precision (unit 
round-off 6.9 x 10-18). 

6.1. An Example of Markov Chain Modeling. An interesting class of test examples 
described by Stewart [39] deals with the computation of the steady state probabilities 
of a Markov chain. This example models a random walk on a (k + 1) by (k + 1) 
triangular grid. A particle moves randomly on the grid by jumping to one of the (at 
most) four adjacent grid points, see Figure 6-1. The probability of jumping from the 
node (i, j) to either of the nodes (i - 1, j) or (i, j - 1) is given by: 

pd(i, j) + j 
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this probability being doubled if either of i or j is zero. The probability of jumping 
from the node (i, j) to either of the nodes (i + 1, j) or (i, j - 1) is given by 

pu(i, j) = I2-pd(i, j). 

(Note that this transition does not occur when i + j = k, which is expressed by the 
fact that pu(i, j) is then equal to zero.) We are interested in the steady state 
probability distribution of the chain. Such probabilities are the components of the 
appropriately scaled eigenvector associated with the eigenvalue unity of the trans- 
pose of the transition probability matrix [18], [35]. 

j=6 * 
j-5 * * 

j=4 * * * 

j=3 * * * * 

j=2 * * * * * 

j=l * * * * * * 

j=0 * * * * * * * 

i=0 i= i=2 i=3 i=4 i=5 i=6 

FIGURE 6- 1: Random walk on a triangular grid 

The nodes (i, j) are labelled in the order (0,0), (1,0) ... (k, 0); (0, 1), (1, 1) ... 

(k - 1, 1); ... (0, k). With this it is easy to form the matrix A. But this is not even 
necessary, nor is it necessary to store A in any way because the operations y = Ax 
for any vector x can be performed by a simple subroutine. 

In our first test we have taken k = 30, which means that the dimension of the 
problem is N = (k + 1)(k + 2) = 496. 

The subspace iteration method SRRIT was tested in [39] for this case. We have 
tried our simple version of the algorithm described in Section 5. As initial system X 
we have taken the system [x, Ax ... Am-'x] where x is a random vector. The 
following results were obtained for various values of the parameters m (the block 
size) and n max (the maximum number of Chebyshev steps in each inner loop): 

TABLE 1. Subspace iteration 

m n max Iterations Matrix-Vector Execution Residual 
multiplications times (Sec.) norms 

6 20 252 1389 62.7 6.4 E-06 
6 50 262 1383 56.6 3.8 E - 06 
8 20 180 1467 69.2 8.5 E - 06 
8 50 182 1413 59.5 7.5 E - 06 
10 20 145 1422 74.3 6.4 E - 06 
10 50 150 1457 63.3 4.1 E - 06 

The stopping criterion- was that the residual norms of the eigenpair corresponding 
to the eigenvalue unity is less than the tolerance - = 10-5, the same as in [39]. 

The difference from the number of matrix by vector multiplications reported in 
[39], is due mostly to the fact that the two implementations are different. Part of the 
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difference is also due to the stopping criterion which, in [39], deals with the two 
dominant eigenvalues 1 and -1 (-1 is also known to be an eigenvalue). Observe 
from the above table that for the same block size m, the performance is better with 
the larger nmax = 50 than with nmax = 20. The reason is that although the two 
iterations are essentially equivalent, a smaller nmax leads to more frequent projec- 
tions, and therefore to substantial overhead. 

The next table shows the same example treated by the Chebyshev accelerated 
subspace iteration. 

TABLE 2. Chebyshev-subspace iteration 

m n max Iterations Matrix-Vector Execution Residual m n max Iterations multiplications times (Sec.) norms 

6 50 25 1019 60.2 1.2 E-07 
6 20 30 645 41.1 4.6 E-06 
8 20 42 903 59.7 4.9 E-06 
8 50 28 1063 66.0 3.8 E-09 
10 20 45 909 64.3 1.0 E-06 
10 50 27 979 62.3 1.9 E-07 

The stopping criterion and the initial set X were the same as for the previous test. 
Notice that here the effect of the upper limit n max of the number of Chebyshev 
iterations can be quite important, as for example when m = 6. In opposition with 
the observation made above for the nonaccelerated algorithm, the performance is 
now better for smaller values of the parameter nmax The explanation for this is 
provided by a close examination of the successive ellipses that are adaptively 
computed by the process. It is possible to observe that when the ellipse does not 
accurately represent the convex hull of the remaining eigenvalues, a larger n max leads 
to wasting an important amount of computational work before having the chance of 
evaluating new parameters. Thus, for smaller values of n max the process has a better 
ability to correct itself by computing a better ellipse more frequently. This is less 
critical with the Arnoldi process because the eigenvalues provided by Arnoldi's 
method are usually more accurate. 

It is instructive to compare the above performances with those of the iterative 
Arnoldi, and the Chebyshev-Arnoldi methods. The next two tables summarize the 
results obtained with the iterative Arnoldi method (Table 3) and the Arnoldi- 
Chebyshev method (Table 4). The stopping criterion is the same as before, and the 
initial vector used in the first Arnoldi iteration is random. 

TABLE 3. Iterative Arnoldi 

Arnoldi Matrix-Vector Execution Residual 
m iterations multiplications times (Sec.) norms 

5 36 180 21.8 7.5 E-06 
10 14 140 22.2 9.3 E-06 
15 8 120 25.7 7.3 E-06 
20 6 120 33.3 6.2 E-06 
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TABLE 4. Chebyshev-Arnoldi 

m n max Arnoldi Matrix-Vector Execution Residual 
calls multiplications times (Sec.) norms 

5 20 6 130 9.4 8.9 E - 06 
5 50 4 142 8.9 3.9 E - 07 

10 20 5 130 13.9 5.0 E - 06 
10 50 3 113 9.6 7.1 E - 06 
15 20 3 85 11.9 6.8 E - 06 
15 50 3 122 14.6 3.2 E - 10 
20 20 3 100 18.6 1.5 E - 07 
20 50 3 88 14.2 4.3 E - 09 

The results of Table 4 constitute a considerable improvement over those of the 
subspace iteration, both in execution time and in number of matrix by vector 
multiplications. Notice that in this example we are also able to reduce the execution 
time by a factor of nearly 2.5 from the iterative Arnoldi method. 

6.2 Computing Several Eigenvalues. The above experiments deal with the compu- 
tation of only one eigenpair, and we would like next to compare the performances of 
our methods on problems dealing with several eigenvalues. Consider the following 
partial differential linear operator on the unit square, with the Dirichlet boundary 
conditions, derived from [7]: 

(24) Lu =+(a~- )+ ~ + a gu a (24) LU-~~~ax( ax)+ay (ay)+ ax +ax 

The functions a, b, and g are defined by: 

a(x, y) = e-XY; b(x, y) = exY; 

g(x, y) = y(x + y); f (x, Y) =1+X+y 

Discretizing the operator (24) by centered differences with mesh size h = 1/(p + 1) 
gives rise to a nonsymmetric matrix A of size N = p2. The parameter y is useful for 
varying the degree of symmetry of A. 

Taking p = 30 and y = 20 yields a matrix of dimension 900 which is not nearly 
symmetric. We computed the four rightmost eigenvalues of A by the Arnoldi- 
Chebyshev algorithm using m = 15 and nm = 80 and obtained the following 
results: 

A1,2 = 9.4429 + 1.7290; Residual norm: 5.4 E - 13, 

A3,4 = 8.9561 + 1..3381; Residual norm: 8.4 E - 08. 

Total number of matrix by vector multiplications required: 110 
CPU time: 26.0 sec. 
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The initial vector was a random vector, and the stopping criterion was that the 
residual norm be less than E = 10-6. Details of the execution are as follows: first an 
Arnoldi iteration (15 steps) was performed and provided the parameters d = 

3.803, c2 = 14.36. Then 80 steps of the Chebyshev iterations were carried out and 
finally another Arnoldi purification step was taken and the stopping criterion was 
satisfied. Note that we could have reduced the amount of work by using a smaller n 
in the Chebyshev iteration. 

The same eigenvalues were computed by the subspace iteration method using the 
same stopping criterion and the parameters m = 8 and nmax = 50. The results were 
delivered after 220 iterations which consumed 1708 matrix by vector multiplications 
and 220 CPU seconds. 

A similar run with the accelerated subspace iteration, with nmax = 15, took 104 
iterations corresponding to a total of 928 matrix by vector multiplications and 188 
seconds of CPU time. Observe that the gain in execution time does not reflect the 
gain in the number of matrix by vector multiplications because the overhead in the 
accelerated subspace iteration is substantial. 

We failed to discuss in detail the use of our accelerated algorithms for the 
computation of the eigenvalues with algebraically smallest real parts, but the 
development is identical to that for the eigenvalues with largest real parts. It suffices 
to relabel the eigenvalues in increasing order of their real parts (instead of decreasing 
order). In the following test we have computed the four eigenvalues of smallest real 
parts of the matrix A defined above. Convergence has been more difficult to achieve 
than in the previous test. With m = 20, nmax = 250, the Arnoldi-Chebyshev code 
satisfied the convergence criterion with E = 10-4, after three calls to Arnoldi and a 
total of 527 matrix by vector multiplications. The execution time was 106 sec. In 
order to obtain the smallest eigenvalues with the regular Chebyshev iteration, we had 
to shift A by a certain scalar so that the eigenvalues of smallest real parts become 
dominant. We used the shift 7.0, i.e.,the subspace iteration algorithm was applied to 
the shifted matrix A - 7.1, and the resulting eigenvalues are shifted back by 7. to 
obtain the eigenvalue of A. The process with m = 10 and n max = 50 was quite slow 
since it took a total of 3925 matrix by vector multiplications and 525 seconds to 
reach the same stopping criterion as above. 

The accelerated subspace iteration did not perform better, however, since it 
required 4010 matrix by vector multiplications to converge with a total time of 736 
seconds. Here we used m = 10 and n max = 25. The reason for this misbehavior was 
that the algorithm encountered serious difficulties to obtain a good ellipse as could 
be observed from the erratic variation of the parameters d and c. We believe that one 
important conclusion from this is that the Chebyshev subspace iteration can become 
unreliable for some shapes of spectra or when the eigenvalues are clustered in an 
unfavorable way. If the spectrum is entirely real (or almost real) this misbehavior is 
unlikely to happen in general. Perhaps, another important remark raised by this last 
experiment is that fitting a general spectrum with an ellipse may not be the best idea. 
If we were allowed to use domains E more general than ellipses, then the problem of 
fitting the spectrum would have been made easier. Clearly, the resulting best 
polynomials Pn would not be Chebyshev polynomials but this does not constitute a 
major disadvantage. Further investigation in this direction is worth pursuing. 
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7. Conclusion. The purpose of this paper was to show one way of using Chebyshev 
polynomials for accelerating nonsymmetric eigenvalue algorithms. The numerical 
experiments have confirmed the expectation that such an acceleration can be quite 
effective. To conclude, we would like to point out the following facts: 

*It is not clear that representing general spectra by ellipses is the best that can be 
done. For the solution of linear systems, general domains have been considered by 
Smolarski and Saylor [36], [37] who use orthogonal polynomials in the complex 
plane. In [31] a similar technique is developed for solving nonsymmetric eigenvalue 
problems. 

*Another way of combining polynomial iteration (e.g., Chebyshev iteration) or, 
more generally rational iteration, with Arnoldi's method has recently been proposed 
by Ruhe [28]. Briefly described the idea is to carry out Arnoldi's algorithm with the 
matrix O(A), 4 being a suitably chosen rational function. Then, an ingenious 
relation enables one to calculate the eigenvalues of A from the Hessenberg matrix 
built by the Arnoldi process. 

*We have selected Arnoldi's method as a purification process, perhaps unfairly to 
other similar processes which may be just as powerful as Arnoldi's. One such 
alternative is the unsymmetric Lanczos algorithm [19], [26], [40]. Another possibility 
which we have failed to describe is a projection process onto the latest m vectors of the 
Chebyshev iteration. This can be realized at less cost than m steps of Arnoldi's 
method although it is not known whether the overall resulting algorithm is more 
effective. 

*We have dealt with approximate eigenvectors of A, in particular for restarting, 
but everything can be rewritten in terms of Schur vectors and invariant subspaces as 
suggested by Stewart [39]. 
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